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Abstract: 

Robot path planning can refer either t o  a mobile vehicle 
such as a Mars Rover, or t o  an end effector on an arm moving 
through a cluttered workspace. In both instances there may 
exist many solutions, some of which are better than others, 
either in terms of distance traversed, energy expended, or joint 
angle or reach capabilities. A path planning program has been 
developed based upon genetic algorithm. This program 
assumes global knowledge of the terrain or workspace, and 
provides a family of "good" paths between the initial and final 
points. 

Initially, a set o f  valid random paths are constructed. 
Successive generation of valid paths are obtained using on e of 
several possible reproduction strategies, similar t o  those found 
in biological communities. A fitness function is defined t o  
describe the "goodness" o f  the path; in  this case including 
length, slope, and obstacle avoidance considerations. 

It was found that with some reproduction strategies, the 
average value of the fitness function improved for successive 
generations, and that  by saving the best paths o f  each 
generation, one could quite rapidly obtain a collection o f  
"good" candidate solutions. 

Introduction: 

Robotics operations in  the 1990's and beyond wil l  be 
characterized by increasing levels o f  system autonomy. This 
implies that the various algorithms being developed now under 
the guise of Artificial Intelligence wil l  be applied t o  those 
robotics operations currently performed or controlled by human 
operators. It has became traditional t o  classify robotics 
operations according t o  such labels as: manipulation, path 
planning, sensors, end effectors, etc.; and to deal wi th  these 
sub-areas independently. However, they are clearly linked, and 
in  some cases solution approaches in  one sub-area can be 
applied t o  problems in another. A characteristic found in many 
areas is that there exists a plethora of solutions. and that the 
problem then reduces t o  how to  distinguish the good solutions 
from the not-so-good ones. 

The robot path planning problem is such a case; and in 
fact the path can refer either to  that of a mobile vehicle such as 
a Mars Rover or arm platform on the space station (MRMS), or to 
an end effector on an arm moving through a cluttered 
workspace. There often exist a large, (even infinite), number of 
paths between the initial and final positions, and the desire is 
not necessarily t o  determine the best solution, but to obtain a 
"good" one within some reasonable time frame. In the present 
discussion, we will assume a "global" approach; that is, the 
space through which the robot moves is fully modeled. The 
obstructions are assumed t o  be known, and initially are assumed 

t o  be static. The case of dynamic obstacles will be discussed in a 
later paper. 

There are a number of approaches to  this problem, most 
o f  which attempt t o  identify the absolute best path. The 
problems with these are that the computational times become 
excessively long, and that "best" is often a very subjective 
quality. What we have attempted t o  do is t o  locate a class of 
"good" solutions, from which one can be selected arbitrarily. 
The method we used was what has become known as the 
"Genetic Algorithm", [l]. 

The Genetic Algorithm (GA) is based upon fairly simple 
biologicallevolutionary principles. A random initial population 
is generated, and allowed t o  evolve in such a way that the 
desirable characteristics o f  individuals are on  the average 
enhanced, and the undesirable characteristics suppressed. The 
characteristics of any individual are described as a bit string, or 
concatenated b i t  strings, much as chromosomal material i s  
composed of series of genes. Associated with each string is some 
"fitness" value which manifests itself as part of the overall 
fitness of the individual within that particular population. If the 
strings with high fitness values are retained, and combined with 
other strings of high fitness, while those of low fitness are 
allowed t o  disappear, the average overall fitness o f  the 
population should increase. 

The mechanism by which the high fitness information is 
transferred is called "genetic crossover". As in  biology, when 
two individuals mate, the offspring carry some genetic material 
from each parent. This is called crossover, and can be illustrated 
as follows: 

Parent 1 : 101101~0111 

Parent 2 : 10001 1 :0010 

Thus a single crossover can produce two new individuals 
with genetic characteristics similar t o  their parents. Multiple 
crossovers obviously can produce many distinct children, but for 
the present application this was not found t o  be necessary. 
What did turn out  t o  be necessary was the inclusion of an 
environmental driver, specifically, mutation. In simplest terms, 
this means that any bit hasa low but non-infinitesimal chance of 
being flipped; a 1 becomes 0 and vice-versus. In our application, 
a mutation had prefound and often catastrophic effects upon 
the survival of the individual, similar t o  what is found in many 
natural mutations. 

child 1 : 101 1010010 

child 2 : 10001 101 1 1  
X I  andlor 

It is necessary to  emphasize that the biological analog has 
limitations, and in  one very important respect, we rewrote 
high-school biology. Most previous work on genetic Algorithms 
have used bit-strings which were of constant length. Ours not 
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only varied, but  the variation itself was used as the fitness 
function, and hence as the driver for our "natural selection" 
law. A second major departure from previous work was the use 
of "Deification", the process by which we saved the best 
individual or individuals of each generation through subsequent 
generations; exempting them from mutation but allowing them 
to participate in the genetic crossover process. We did, as shall 
be explained in  detail, retain a probabilistic approach: even the 
individual with the best fitness value can suffer an accident and 
hence fail t o  reproduce; although most of the time, the "good" 
genetic material was maintained and developed. 

The Algorithm: 

The following terms and definit ion w i l l  be used t o  
describe the genetic algorithm. 

Population: 

Generation: 

The set of valid paths (solutions) 

The subset o f  the population which i s  
under consideration at  a given point in  
time. 

Individual: A single member of the population; in this 
case, a single valid path. The individual is 
represented as a bit string, or possibly an 
ordered list, eg: 101 100101 1. 

Those properties by which the value of the 
individual is measured. Examples: total 
p a t h  l e n g t h  compared  t o  o t h e r  
individuals, avoidance o f  steep inclines, 
energy expenditure, etc. 

Fitness: 

In order to  perform the path-planning task for a mobile 
robot, the following general approach was taken. First, the 
terrain map was described. Then an initial group of valid paths 
were formed, using a random path generator. These paths were 
treated as the initial generation, and one of several strategies 
for reproduction was chosen. Successive generations were 
formed using the reproduction strategy; t h e  process 
terminating after some arbitrary number of generations, usually 
50. This either allowed for convergence t o  a set of "good" 
paths, or provided an indication that the strategy chosen was 
not convergent, i.e., the average and best fitness values failed to  
improve with time. During the run, the best path solutions in 
each generation were stored, allowing the selection of the best 
individual for the total population, even i f  it did not happen to  
appear in the final generation. This selection was made simply 
by choosing that individual path with the best fitness value. 

Figure 1 illustrates one of the terrain maps. The black 
squares represent regions of exclusion, such as boulders. Paths 
were constructed as moves between adjacent white squares, 
either laterally or diagonally. It was permissible for the robot t o  
pass between the corners of diagonally adjacent obstacles, but 
not between their laterally adjacent sides. The number within 
each square represents the "elevation"; so hills, valleys, craters, 
and canyons could be represented as well .  Cliffs were 
represented as obstacles, because it was assumed that they were 
unclimbable, and that falling off of one would terminate the 
path. The numbers of rows and columns could be adjusted, so 
arbitrarily accurate maps could be drawn, depending upon the 
patience of the user. 

It should be mentioned, however, that autonomous 
vehicles generally do not have true global information, but can 
"see" obstacles only within their immediate vicinity. Thus 
"global" means limited to  the field of view. This does not 

invalidate the method for larger areas; it simply requires that 
intermediate goals be established, and that the algorithm be 
rerun until the final goal is attained. Except for pathological 
cases, back tracking should not be required to  extend past the 
preceding sub-goal's origin. Consequently, a grid o f  about 
15x15 was chosen as a compromise between computer time, 
user input time, and the desire for fineness of detail. 

The initial set of paths for each run were constructed by a 
random path generator. Each initial path had to  be valid; that 
is, i t  had to  start at the user-selected origin, and terminate at the 
goal, and could not traverse obstacles. Otherwise, loops, hil l  
climbs, crater traversals, etc., were allowed. The number o f  
initial paths was set by the user. 

Each valid path, or individual, had a fitness value, which 
determined that individual's status within i t s  generation, which 
in  turn determined how likely that individual was to  reproduce, 
thus passing the "good" information on to  the next generation. 
The fitness value was determined by: 1) length - the longer the 
path, the poorer the value; and 2) "energy" expended. The 
latter was modeled with a hiker in  mind; going straight up a 
steep slope is much more difficult than is going up a switchback. 
To encourage the vehicle to  take a gentle but longer slope up a 
hill, as opposed to  a short but steep climb, a penality function 
was devised to  be the square of the slope between adjacent 
points. Figure 2 illustrates two paths to  the same goal, and 
shows their respective fitness values. 

Traversals of descending slopes, (not cliffs), required no 
special energy outlay, so they were not penalized in the fitness 
values. 

Therefore, a number was assigned t o  each of the initial 
paths, based upon that path's length and upon its energy 
efficiency. It should be reemphasized that only valid paths were 
permitted. The next step was t o  form a new generation, the 
average fitness value of which was hopefully smaller (i.e., 
better) than the original generation's average fitness value. To 
do this, required selection of one of several possible strategies. 
Attempts were made t o  pat tern these af ter  zoological 
analogues, w i t h  overlays from various societies, real o r  
mythological. The choice of strategy determined the number of 
individuals permitted t o  mate, the number t o  be culled, the 
number to be "deified", - as well as the environmental pressure, 
the rate of mutation. 

Mating pair selections and cullings were performed by 
using a weighted random selection. A "line" was formed, 
composed of the concatenated fitness values of the individuals 
within the generation. The line segments were normalized t o  
unity, the value for th  individual with the best fitness within that 
generation. Thus a worse path has a lower numerical value. The 
''line'' is the summation of these segments. If it were intended 
that 10% of the generation should be culled, a number of 
"darts" equal t o  90% of the generation size would be thrown at 
the "line". The longest segments have the greatest chance of 
being hit by a dart; that is, they are selected for survival. Of 
course, it i s  possible to  miss the "best" in  the generation - this 
happens in nature - the lead elk slips and fractures a leg, or runs 
afoul of a predator. On the average, however, the least f i t  of 
the generation will be eliminated. Subsequently, mating pairs 
are formed. A "survivors line" is formed in a similar manner, 
and the "darts" thrown again. Mating pairs are established by 
pairs of dart throws. As a result, on the average, the best f it will 
be paired together, although again there is a random element. 

Two additional points should be made here First, i t  was 
required that two individuals be selected. If the line segment 
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representing a single individual was chosen twice within the 
same mating pair, another "dart' was thrown, until a second 
individual was obtained. Second, and of great importance for 
the correct functioning of the G.A., an individual could be 
selected for more than one mating pair. This is the scheme by 
which the "good" individuals produce more offspring on the 
average. 

The mating of two individuals leads to  genetic crossovers 
in their offspring. In each case, both possibilities formed from a 
single crossover were enrolled into the next generation. In 
practice, when two individuals were selected, a search was made 
for a common grid point. If several points were found in each 
individual, one would be selected at random, and the initial 
portion of each path would be concatenated with the trailing 
portion of the other. If no common points were found, the 
individuals would be enrolled as is in the new generation. Thus, 
i n  either case, t w o  individuals were added t o  the  next  
generation. The number o f  pairs t o  mate determines the 
number of offsprings, so the overall size of each generation will 
shrink, expand, or stay the same according t o  the strategy 
chosen by the user. The usual practice was to  keep the size of 
the generation constant, in order t o  prevent either premature 
extinction prior t o  the evolution o f  "good" paths, or the 
overloading of the computer by too many individuals. This was 
done by "filling" the subsequent generation with members of 
the mating pool, based again on a random weighted selection 
process. 

An additional ingredient was found t o  be necessary in  
order to  prevent what resembled a collapse of genetic diversity. 
If a small, but finite mutation rate was not added, after several 
generations a small group of identical paths was formed. Our 
"mutation" kept the pot boiling, so that new solutions could be 
obtained. It also occasionally destroyed a "good" path, which 
necessitated our saving the  best individuals f rom each 
generation, as ment ioned previously. M u t a t i o n  was 
implemented as follows: the mutatio probability p determined 
whether i t  would occur within a given individual. If it did occur, 
a point along the path was selected at random. The remainder 
of the unmutated path between that point and the goal was 
destroyed. A new link t o  an allowed square was made, and the 
remainder of the path constructed using the random path 
generator. Clearly, most mutations had catastrophic effects for 
the fitness value of the mutant, however i t  did permit new 
material t o  evolve, which was not present in the original 
generation. 

A final technique was instigated to  accelerate the rate at 
which "good" paths evolved. The best member, (or members), 
of each generation i s  preserved in tact  for  subsequent 
generations. Deified individuals are free from the threat of 
mutation, but do remain within the mating pool. The result of 
this non-biological device is a more rapid convergence toward 
the "good" solutions, and in  the presence of high mutations 
rates, the necessary ingredient for 

Experimental Procedure: 

Convergence. 

The Genetic Algorithm program was developed on a 
Symbolics 3670, using Zeta LISP. Because the Genetic Algorithm 
is based upon manipulation of ordered lists, LISP is eminently 
suitable for this task. For the initial version of the program, a 
grid board was laid out, upon which the user could define 
obstacles, as well as elevations. 

Following the selection of a specific board, or the 
construction thereof using the interactive graphics routines 
available upon the Symbolics, the initial conditions and 

parameters for the run were selected. These included 
population size, number of matingdper generation, number of 
culled individuals, number of "saved" individuals, and mutation 
rate; as well as the number of generations to  be run. The run 
was then performed, recording the following information: the 
best path for each generation, the fitness value for that path, 
the average fitness for all paths of each generation, and the 
diversity of each generation. These data could be displayed 
graphically, as illustrated in Figure 3. 

A series of runs were made, using a variety of boards and 
initial conditions. These could be grouped into three major 
c I asses : " E I i ti s t " , " U n i versa I i s t  " , a n d " Rad i 0-c  h e m i c a I 
Wastedump". The El i t i s t "  strategy permitted only the most f i t  
members of the generation t o  mate, as is characterized by high 
cull numbers and low mating number. It should be recalled that 
the individuals paired for mating are obtained by a weighted 
random selection process, and therefore no guarantee exists 
that the ones w i t h  the best fitness will be chosen. Not 
surprisingly, the number of generations (and hence computer 
time) necessary t o  obtain the good paths was greater for this 
strategy. 

An improvement in the convergence was observed by 
using the "Universalist" strategy: h igh mating numbers, 
(usually involving all individuals within each generation), and 
low cull numbers. Even with the pairing of very good and very 
bad solutions, the average fitness improved more rapidly than in 
the case of the "Elitist': strategy. 

The "Radio-chemical Was tedump"  runs w e r e  
characterized by high mutation rates. The high rate was 
imposed upon both the Elitist and Universalist strategies, with 
the result that convergence t o  a good solution disappeared. The 
average fitness values for these runs generally showed no  
improvement wi th  increasing generation number. It was 
possible, however, t o  force improvement by imposing 
"deification"upon the best individual(s) from each generation; 
and when this is done, mutation behaves like genetic crossover. 
The average and best fitness values do improve with time, when 
both conditions are applied. 

It is clear from the latter, that by imposing deification 
even without the high mutation rate, the convergence would be 
improved as well; and this was done to  decrease the amount of 
computer time. 

Results: 

In order t o  determine the characteristics of the Path 
Planner, a series o f  runs were made for increasing complex 
terrain maps. For each terrain map, one or more o f  the 
following input parameters was varied: population size, 
number of mating pairs, cull number, mutation probability, and 
number of deified individuals per generation. The output from 
each set was examined to determine relative convergence rates 
for good solutions, and how "good" the solutions were 
compared to  the "best" solution for that terrain map. 

The initial set was run using a 10x10 square board, (Figure 
4) with no variation in elevation. The start position was square 
(0, 0) and the goal was square (9, 9). The best path had a length 
(fitness value) of 13.899, and of the thirteen runs using this map, 
seven found this particular path, and the remaining six had 
fitness values less than 16.8. The ratio of mating pairs t o  
population size was varied from 0.05 to  0 50. The variation in 
the convergence to  good solutions between these runs was of 
the same magnitude as that observed in repeated runs using the 
same input set. Therefore, although there was a slight 
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indication that a ratio between 0.3 and 0.4 produced better 
convergence, it could not  be isolated from the variation 
produced just by the random number generator. 

In all runs in this set, the mutation probability was held at 
0.05, and there were no individuals deified. Rapid convergence 
to good solutions were seen throughout; in  a majority of cases, 
the best solutions was obtained. No definite trend was observed 
between Elitist and Universal mating strategies. 

Two additional runs were made at this time, examining 
separate issues. These runs utilized a simple map, consisting of a 
10x10 square board with a barracade between the start and 
goal. The first of these barracade runs was to  examine the rate 
of convergence given a much larger set of possible initial paths. 
The concern was that good solutions would be much harder t o  
obtain because the initial paths could be much more complex 
with the additional open spaces. This was found not t o  be the 
case. Convergence t o  good solutions occurred rapidly. 

The second barracade run involved raising the mutation 
probability t o  0.65, without saving any individuals. The average 
fitness and best fitness value for each generation failed t o  
improve. It was found subsequently, that with a high mutation 
probability it was absolutely necessary t o  deify one or more 
individuals in  each generations, in  order for the best fitness 
value to  improve; and even then the average fitness values 
failed to  converge. 

Fol lowing these runs, a more complex map was 
introduced, (Figure 5). This map consisted of 15x15 squares, 
with scattered obstacles, but s t i l l  no variation in elevation. A 
total of eight runs were performed using this map Again, the 
major issue was to  determine whether there was any significant 
variation in rate of convergence t o  good solutions as the ratio 
between number of mating pairs and population size was 
varied. Two runs also involved adjusting the mutat ion 
probability. 

The absolute best fitness (shortest path) for this map was 
calculated to  be 20.97, and results for the eight runs varied 
between 21.5 and 32.5. Clearly, the results were not  as 
satisfactory with this set as they were with the simpler map. 
However, convergence was observed in  all cases, including that 
which consisted of mutation probability of 0.90. In fact, this 
case, in which a single individual was saved in each generation, 
recorded the best solution for the entire set, although the 
average fitness did not improve during the entire run. Again, no 
significant differences were observed between Elitist and 
Universal mating strategies. 

A final run was made with this map utilizing a very low 
mutation probability (p = 0.0001). It was observed that the best 
solution converged fairly rapidly t o  23.3, or about 15% above 
the absolute best value. However, the diversity collapsed t o  
near zero midway through the run, and consequently no further 
improvement could occur after that point. This illustrates the 
necessity of a small but  f inite mutation probability for the 
successful operation of the algorithm. 

The next stage consisted of adding topology into the 
calculation of the fitness value, and il lustrating it on  the 
Symbolics Computer. The small number in  the upper left hand 
corner of each square in Figure 6a represents the "elevation" of 
that square. Contour lines have been drawn in Figure 6b for 
better visualization. Represented are: a steep rising slope, a 
hill, a hole (or crater), and a ditch or "wash". the penalty 
imposed by climbing up a slope is equal t o  the square of the 
local slope. There is no penalty for climbing down. 
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Thirteen runs were performed using this terrain map. 
Calculating the absolute best path was extremely difficult; in  
fact, what is believed t o  be the best path was found by 
correcting one of the paths located by the genetic algorithm 
itself. The fitness value of this corrected "best" path is 23.314, 
and the best fitness values obtained during the runs ranged 
between 25.3 and 43.8, (average = 35.11, 51% above best 
value). The major area of investigation in this set focused upon 
the effect o f  deif icat ion upon the  convergence t o  the 
"best"so1ution. By saving at  least one member o f  each 
generation, it is guaranteed that the best fitness value solution 
i s  at least no  worse during subsequent generations. A 
significant improvement was observed by the deification of 
multiple individuals within a generation, up t o  that point at 
which the genetic diversity collapsed. The best results were 
obtained with 5-10 individuals saved out of a generation size of 
250. It was also observed that slightly better results were 
obtained using a mating pair number of 0.3 X generation size, 
although it is not clear that this i s  statistically significant. 

Conclusions: 

We have developed a path planner using a genetic 
algorithm. The principal differences between our algorithm and 
other genetic algorithms are: 1) the variable length of the list, 
2) the way i n  which we performed crossover and mutation 
operations, and 3) the use of deification. It should be pointed 
o u t  t h a t  a "greedy A l g o r i t h m "  was ava i l ab le  f o r  
post-processing, t o  straighten out kinks in the final paths, i f  so 
desired. None of the results discussed in this paper included that 
technique. In a real world case, such as onboard an autonomous 
planetary surface vehicle, this type of post-processing would 
doubtlessly be employed. 

We make the following conclusion based upon our data: 

1) The genetic Algorithm can be used to  construct a 
robust path planner. Convergence t o  good 
solutions were obtained for a wide range of input 
parameters 

2) The inclusion o f  De i f i ca t i on  improves the  
performance of the algorithm significantly. 

Deification is required for convergence when using 
high mutation probabilities. 

There is an indication that the optimum ratio of 
mating pairs to  population size lies between the 
Elitist and Universal mating strategies. This value 
appears to  be in the range 0.3 - 0.4, which implies 
up t o  80% of the populat ion involved i n  the 
genetic crossover operation. 

3) 

4) 

It should finally be observed tha t  one o f  the major 
drawbacks of the A* algorithm, which is used in many of the 
existing path planning programs, is that the search-tree i s  

exponential. The corresponding search tree used in  this Genetic 
Algorithm is of order N X P, where N is the number of nodes in 
the list, and P is the population size. This implies that the 
Genetic Algorithm is a far less computation intensive approach 
to  path planning. 
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Figure 1. A 10 x 10 terrain map, illustrating 
obstacles, elevations, and a typical path 

Figure 2. Paths illustrating gradual and steep slopes 
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Figure 3b.  Genet ic  D i v e r s i t y .  The D i v e r s i t y  i s  t h e  f r a c t i o n  

o f  d i s t i n c t  paths i n  each generat ion .  
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Figure  3a .  F i t n e s s  Values .  The top  l i n e  i s  the  Average F i t n e s s .  

The lower l i n e  i s  the  Best F i t n e s s  Value. 
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Figure 4 .  A f l a t  10 x 10 o b s t a c l e  map 

Figure 6a. The 15 x 15 complex t e r r a i n  map, 
showing both p o s i t i v e  and negative topology.  
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Figure 5 .  A f l a t  15 x 15 complex obstacle-map 
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Figure 6b. The same complex t e r r a i n  map 
with contour l i n e s  a t  2 u n i t  i n t e r v a l s .  
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